Acoustic attenuation in a three-gas mixture: Results

نویسندگان

  • Yefim Dain
  • Richard M. Lueptow
چکیده

Acoustic attenuation in a mixture of gases results from the combined effects of molecular relaxation and the classical mechanisms of viscosity and heat conduction. Consequently, the attenuation depends on the composition of the gas mixture, acoustic frequency, temperature, and pressure. A model of the relaxational attenuation that permits the calculation of acoustic attenuation is used to predict the effect of composition, frequency, temperature, and pressure on the acoustic attenuation in a three-component gas mixture of nitrogen, methane, and water vapor. The attenuation spectrum is dependent upon the composition through the appearance of peaks in the spectrum related to the relaxation frequencies of the particular components and their relaxing complexes. The relaxation peak related to methane dominates except at low methane concentrations, where the nitrogen peak, which is dependent upon the water vapor and methane concentration, is evident. Temperature and pressure significantly alter the relaxation frequency and the degree of attenuation, but water vapor plays little role in the attenuation. © 2001 Acoustical Society of America. @DOI: 10.1121/1.1413999#

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Acoustic attenuation in three-component gas mixtures--theory.

Vibrational relaxation accounts for absorption and dispersion of acoustic waves in gases that can be significantly greater than the classical absorption mechanisms related to shear viscosity and heat conduction. This vibrational relaxation results from retarded energy exchange between translational and intramolecular vibrational degrees of freedom. Theoretical calculation of the vibrational rel...

متن کامل

Liquid Temperature Effect on Sound Propagation in Polymeric Solution with Gas Bubbles

Acoustic properties of polymeric liquids are high sensitive to free gas traces in the form of fine bubbles. Their presence is typical for such liquids because of chemical reactions, small wettability of solid boundaries, trapping of air in technological operations, etc. Liquid temperature influences essentially its rheological properties, which may have an impact on the bubble pulsations and so...

متن کامل

A Correlation Study of Computational Techniques of a Three-pass Perforated Tube Muffler including Bem and 1d Methods

Automotive exhaust systems give a major contribution to the sound quality of a vehicle and must be properly designed in order to produce acceptable acoustic performances. Obviously, noise attenuation is strictly related to the internal gas-dynamic field that, on the other hand, needs to be optimised also in terms of pressure losses. In this work, the noise attenuation characteristics of a perfo...

متن کامل

Fine-tuning molecular acoustic models: sensitivity of the predicted attenuation to the Lennard-Jones parameters.

In a previous paper [Y. Dain and R. M. Lueptow, J. Acoust. Soc. Am. 109, 1955 (2001)], a model of acoustic attenuation due to vibration-translation and vibration-vibration relaxation in multiple polyatomic gas mixtures was developed. In this paper, the model is improved by treating binary molecular collisions via fully pairwise vibrational transition probabilities. The sensitivity of the model ...

متن کامل

Determination of sediments diameter using acoustic waves

The use of acoustic waves in researches related to sea water is of most importance among scientists recently. Since these waves are the only waves, transmitted in water with lowest attenuation and high speed, they can be used in many scientific fields. The main goal of this research is to better understand the physics and mechanisms of sound-seabed interaction, including acoustic penetration, p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001